TDA Progress Report 42-102

August 15, 1990

Linear-Phase Approximation in the Triangular Facet
Near-Field Physical Optics Computer Program

W. A. Imbriale and R. E. Hodges
Ground Antennas and Facilities Engineering Section

Analyses of reflector antenna surfaces use a computer program based on a discrete
approximation of the radiation integral. The calculation replaces the actual surface
with a triangular facet representation; the physical optics current is assumed to
be constant over each facet. This article describes a method of calculation using
linear-phase approximation of the surface currents of parabolas, ellipses, and shaped
subreflectors and compares results with a previous program that used a constant-
phase approximation of the triangular facets. The results show that the linear-phase
approximation is a significant improvement over the constant-phase approximation,
and enables computation of 100-1,000) reflectors within a reasonable time on a

Cray computer.

l. Introduction

One of the simplest reflector antenna computer pro-
grams is based on a discrete approximation of the radia-
tion integral. This calculation replaces the actual reflec-
tor surface with a triangular facet representation so that
the reflector resembles a geodesic dome. The physical op-
tics (PO) current is assumed to be constant in magnitude
and phase over each facet, so the radiation integral is re-
duced to a simple summation. This program has proven to
be surprisingly robust and useful for the analysis of small
reflectors, particularly when the near-field is desired and
surface derivatives are not known.

It is natural to inquire whether a more sophisticated
approximation of the PO surface current will yield more
accurate results or permit the use of larger facets. In this
article, a linear-phase approximation of the surface cur-
rent is made. Within each triangular region, the resulting

integral is the two-dimensional Fourier transform of the
projected triangle. This triangular-shape function inte-
gral can be computed in closed form [1]. The complete
PO integral is then a summation of these transforms.

Once the current on the triangle is determined, the
linear-phase approximation takes about three times longer
to compute a field point than does the constant-phase ap-
proximation. Thus the time savings depend on reducing
the number of triangles required to achieve convergence.

Examples are given for scattering from parabolas, el-
lipses, and shaped surfaces. The general trend is similar
for all cases in that, depending upon the size of the tri-
angles, there is an angular limit over which the solution
is valid. This angular limit is significantly larger with the
linear-phase approximation than with the constant-phase
approximation. Thus the linear-phase approximation can
be used to solve larger problems if core limitations are a
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problem, or alternatively, a smaller number of triangles
can be used to solve the same size problem.

Il. Analytical Details

The PO radiation integral over the reflector surface X
can be expressed [2]
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in which r designates the field point, r’ the source point,
R = |r — 1’| is the distance between them, and R =
(r — r')/R is a unit vector. The PO surface current on
the subreflector surface J, is expressed

J.(r) = 2ii x H,(r') (2)

For the purpose of analysis, the true surface ¥ is re-
placed by a contiguous set of N-plane triangular facets.
These facets, denoted A;, are chosen to be roughly equal
in size with their vertices on the surface . Figure 1 shows
a typical facet and its projection onto the z-y plane. Let
(i, yi, zi) represent the centroid of each triangle where the
subscript ¢ = 1,---, N is associated with a triangle. Then,
the field obtained by replacing the true surface ¥ by the
triangular facet approximation is
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In Eq. (3), J is now the equivalent surface current evalu-
ated on the triangular facets. Since the triangles are small,
it 1s expected that R and R do not vary appreciably over
the area of a given facet. Thus, let R; and R; be the
value obtained at the centroid (z;, ¥, z;) of each facet and
approximate Eq. (3) by
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)
Assume that the necessary transformations have been

performed so that the incident field H, is given in terms
of the reflector coordinate system. Then

J,’(l") = Qﬁi X H,(l‘l) (6)
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Next, assume that the incident field can be represented by
a function of the form

e_jkrl
7
477y (7)

H, = h,(l‘,‘)

where 7, is the distance to the source point. Then, Eq. (5)
can be written

fli X h_., (r,-)
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To simplify the form of the integration, the surface Jaco-
bian is introduced within each triangular facet A;. For a
planar surface z; = f;(z,y), a normal is given by

N =-xfi —9fyi +2 (9)
where
_oh 0%
fei = oz i = dy

and a unit normal is given by

" N;
n; = N_‘| (10)

This permits the explicit evaluation of the Jacobian as
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Making use of the Jacobian then allows Eq. (8) to be
rewritten as

11; x hy(r;)
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in which A! represents the area of the ith triangular facet
projected onto the z = 0 plane. Now, make a Taylor-series
expansion of the exponent in Eq. (12). Retaining only the
first-order terms, one can formally write

R(z,y) +r:(2,9) = 7(a; —wiz — viy) (13)
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in which a;, u;, and v; are constants. This approxima-
tion corresponds to a far-field approximation on the ith
triangle. With this approximation, Eq. (12) reduces to
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It may now be observed that this integral is the two-
dimensional Fourier transform of the ith projected triangle
A, expressed as

S(u, v) = / eI (4= +99) 4z dy (15)
ol

In order to explicitly evaluate the constants in Eq. (13),
note that the equation of a plane can be expressed as

z=(z—z)foi + (y— ¥i) fyi + zi

This can be used to obtain
a; = kR(xi,y;) + kry(zi, 4i) + wizi + viys (16)
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Placing the result of Eq. (16) into Eq. (14), and recall-
ing Egs. (6) and (7), yields
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This is the final form of the linear-phase approximation
over each triangular facet. This expression can be used in
Eq. (4) to compute the radiation integral once the Fourier
transform of a triangular shape function S(u, v) is known.
Fortunately, this transform can be computed in closed
form [1] from the expression

3
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in which (2,,yn) are the coordinates of the triangle ver-
tices numbered in a clockwise direction. The slope of the
nth side (between corners n and n + 1) is given by

Pn = Yn+1 — Yn (21)
In4l — Tn

Some attention must be given to the following special
cases. First, if u = v = 0, the transform reduces to the
formula for the area of a triangle

1
S5(0,0) = —3 [xl(yz—ya)+r2(y3—y1)+x3(y1—yz) (22)
Next, if u/v — —pp, then
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Ill. Numerical Results

A FORTRAN subroutine was written to perform the
linear-phase calculations indicated above. Test cases were
run for parabolas, ellipses, and shaped subreflectors, and
the results were compared with the previous program,
which used a constant magnitude and phase approxima-
tion on the triangular facets. A focused parabola is nei-
ther an interesting nor a challenging case for the algo-
rithm, since the phase variation over the facet is small.
As a simple test case, the far-field pattern and gain of a
1,000\-diameter parabolic reflector with a focal length of
F = 400X was calculated. The reflector is illuminated by a
linearly polarized horn with a cos @ pattern function. Fig-
ure 2 compares the linear- and constant-phase approxima-
tion for a roughly equally spaced 80-by-80 rectangular grid
of points divided into triangles over the reflector surface
(approximately 10,000 triangles). The running time on a
Cray X-MP was less than one minute. It has been previ-
ously demonstrated [3,4,5] that, once sufficient triangles to
converge the solution have been utilized, the results of the
constant-phase algorithm are valid, so only comparisons of
the two techniques are presented.

A more interesting example is the ellipse shown in
Fig. 3. The projected aperture of the ellipse is about 3 m,
illumination function is a cos®?@ pattern function (22.3-
dB gain), and the frequency is 31.4 GHz. The ellipse is
about 350\ along the major axis. Figure 4 compares the
constant-phase approximation for different grid densities
of approximately 4,000, 10,000, and 23,000 triangles and
illustrates a general trend of the method, i.e., depending
on the size of the triangles, there is an angular limit over
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which the solution is valid. Figure 5 compares the linear-
phase approximation with the constant-phase approxima-
tion for the 4,000-triangle case and demonstrates that the
angular range is larger with the linear-phase approxima-
tion.

A third example is the shaped subreflector shown in
Fig. 6. The diameter is 3.42 m (135 in.), and it is fed
with a cos?338 pattern function (29.7-dB gain). Fig-
ure 7 compares the results of a 4,000- and 10,000-triangle
grid constant-phase approximation with a 4,000-triangle
linear-phase approximation. The frequency of operation is
2.3 GHz, hence, the subreflector is about 26X in diameter.
The 10,000-triangle constant phase is the converged result,
and the 4,000-triangle linear case gives the same result.
A very good approximation is also obtained with a 1,400-
triangle grid for the linear case, but no meaningful results

are obtained with the constant-phase case. Figure 8 gives
the linear-phase result for 31.4 GHz (360X subreflector)
using 23,000 triangles. No meaningful result is obtained
for the equivalent constant-phase case.

Most of the examples given are for large reflectors to il-
lustrate the robust character of the technique. For smaller
reflectors (< 100)), meaningful results can be obtained on
a PC in a reasonable time.

IV. Conclusions

The linear-phase approximation is a significant im-
provement over the constant-phase approximation and en-
ables the computation of fairly large (100 to 1,000A) re-
flectors in a reasonable time (on the order of minutes) oun
a Cray computer.
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Fig. 7. Shaped subreflector example for H-plane at 2.3 GHz.
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Fig. 8. Shaped subreflector, 31.4 GHz.



